AN EXAMPLE CONCERNING THE NONLINEAR POINTWISE ERGODIC THEOREM

BY ULRICH KRENGEL

Institut für Mathematische Stochastik, Universität Göttingen, Lotzestr. 13, 3400 Göttingen, FRG

ABSTRACT

It is shown that the pointwise ergodic theorem for Markov operators in L_1 , having a finite invariant measure, fails to extend to the case of nonlinear operators.

1. Introduction

Beginning with the work of Baillon [B 1], [B 2], a lot of effort has recently been devoted to the study of ergodic theorems for nonlinear operators, see [K]. However, all papers on this subject deal only with questions of weak and strong convergence, while the problem of almost sure convergence, which plays a dominant role in the linear ergodic theorems, has been ignored.

The simplest classical pointwise ergodic theorem for linear operators is the theorem of Hopf [H]: If T is a linear operator in L_1 of a probability space with ||T|| = 1, which is order preserving and leaves the constant 1 fixed, then the averages $A_n f = n^{-1}(f + Tf + \cdots + T^{n-1}f)$ converge a.e. for all $f \in L_1$.

We shall show that this theorem fails to extend to nonlinear T in a very strong sense.[†] We construct an order preserving T in L_1 with T0=0 which is nonexpansive in L_p for $1 \le p \le \infty$, and a bounded function $f \ge 0$ such that $A_n f$ diverges on a set of positive measure. T is positively homogeneous and leaves the nonnegative constants fixed. $T^n g$ (and hence $A_n g$) does converge in L_p -norm for all $g \in L_p$ ($1 \le p < \infty$) in our example.

Hopf's theorem makes more stringent assumptions than all other pointwise operator ergodic theorems. E.g., the ergodic theorems of Dunford-Schwartz [DS] and of Akcoglu [A] are more general. It therefore seems that the example

Received February 24, 1986

^{*} Recall that T is called nonexpansive in L_p if $||Tf - Tg||_p \le ||f - g||_p$ holds for all f and g.

essentially eliminates all hopes for *general* pointwise nonlinear ergodic theorems. Of course, the possibility of positive results for specific classes of nonlinear operators remains.

Roughly speaking, our T will be an infinite dimensional product of speed limit operators, introduced by Krengel and Lin [KL] in the 1-dimensional case.

2. Construction of T

For $n = 1, 2, ..., let \Omega_n$ be the unit interval [0, 1[, \mathcal{A}_n the Borel- σ -algebra, and μ_n the Lebesgue measure. $(\Omega, \mathcal{A}, \mu)$ denotes the product of these measure spaces. T will be given in terms of a sequence of functions $\varphi_n : \mathbf{R}^+ \to [0, 1]$, which are decreasing but not necessarily strictly decreasing. We assume $\varphi_n(x) = 0$ for $x \ge 1$. Some of the arguments will be the same as in the 1-dimensional case. They will not be given in detail. Therefore, it may be helpful to study section 5 of [KL] first. It is largely independent of the rest of [KL].

Let $X_n(\omega)$ denote the *n*-th coordinate of $\omega \in \Omega$. A subset of Ω of the form $\{\omega: a_n \leq X_n(\omega) < b_n (n=1,\ldots,N)\}$ will be called *N*-interval in Ω . \mathscr{F} denotes the class of functions on Ω which are nonnegative multiples of the indicator function of a finite disjoint union H of N-intervals for some N. We first define an operator $T_{(1)}$ on \mathscr{F} . Consider a fixed $f = \alpha 1_H$ in \mathscr{F} . There exist finitely many disjoint (N-1)-dimensional intervals J_s in $\Omega_2 \times \cdots \times \Omega_N$ with union $\Omega_2 \times \cdots \times \Omega_N$ and numbers

$$0 \le a_{s1} < b_{s1} \le a_{s2} < b_{s2} \le \cdots \le a_{sk} < b_{sk} \le 1$$

with

$$H \cap \{(X_2, \ldots, X_N) \in J_s\} = \bigcup_{i=1}^k \{(X_2, \ldots, X_N) \in J_s \text{ and } a_{si} \leq X_1 < b_{si}\}.$$

(k can depend on s; if the left hand side is empty for some s, put k = 0). The integral equation

$$c'_{si} = \int_0^t \varphi_1(b_{si} + c^x_{si}) dx$$

has a unique solution. Put $c_{si} = c_{si}^{1}$ and define the sequence d_{si} by backward induction:

$$d_{sk} = c_{sk}$$
 and $d_{si} = Min(c_{si}, d_{s,i+1} + (a_{s,i+1} - b_{s,i})),$

$$(i = k - 1, k - 2, ..., 1)$$
. Next put

$$H_{s,i} = \{(X_2, \ldots, X_N) \in J_s, a_{si} + d_{si} \leq X_1 < b_{si} + d_{si}\},\$$

and

$$T_{(1)}f = \alpha \sum_{s} \sum_{i=1}^{k} {}^{1}H_{s,i}$$

(The conditions on φ_1 imply $b_{si} + d_{si} \leq 1$.)

Of course, for $f \in \mathcal{F}$ the value of N is not unique. It may be replaced by any larger value. But the definition of $T_{(1)}f$ does not depend on this.

Let \mathcal{F}_1 denote the set of functions on Ω which can be written in the form $f = \sum_{j=1}^m f_j$ with $f_j \in \mathcal{F}$ and

$$\{f_1 > 0\} \supset \{f_2 > 0\} \supset \cdots \supset \{f_m > 0\}.$$

Put

$$T_{(1)}f = \sum_{j=1}^{m} T_{(1)}f_{j}.$$

As in [KL], $T_{(1)}$ is order preserving, $T_{(1)}0=0$, and $T_{(1)}$ is L_1 -nonexpansive in \mathcal{F}_1 , i.e., $f,g\in\mathcal{F}_1$ implies $||T_{(1)}f-T_{(1)}g||_1\leq ||f-g||_1$. As \mathcal{F}_1 is dense in $L_1^+(\mu)$, $T_{(1)}$ extends by continuity to $L_1^+(\mu)$. Finally, for $f\in L_1(\mu)$, put $T_{(1)}f:=T_{(1)}f^+$. As in [KL], $T_{(1)}$ is nonexpansive in L_∞ , too. It follows that $T_{(1)}$ is order preserving and nonexpansive in L_p $(1\leq p\leq \infty)$. For $f\geq 0$ one easily checks that $\int T_{(1)}fd\mu=\int fd\mu$. In terms of [KL], $T_{(1)}$ is a speed limit operator, leaving all coordinates but the first fixed and moving f in the direction of the first coordinate with speed limit φ_1 for one time unit. $T_{(n)}$ is defined in exactly the same way using the n-th coordinate and the speed limit φ_n . If $f\in\mathcal{F}_1$ depends only on the first N coordinates and n>N holds, then $T_{(n)}f=f$. This follows because we may put $0=a_{s1}< b_{s1}=1$ above. Finally put, for such an f,

$$Tf = T_{(N)}T_{(N-1)}\cdots T_{(1)}f.$$

Again, this definition is independent of N. T again extends to L_1^+ by continuity and to L_1 by putting $Tf := Tf^+$, and T has the properties of $T_{(1)}$ mentioned above.

Put

$$B = \bigcup_{m=1}^{\infty} \{X_m \leq 2^{-(m+2)}\}.$$

We claim that it is possible to determine the speed limits φ_m in such a way that $A_n 1_B$ fails to converge a.e.

First observe that $0 \le T^k 1_B \le 1$ and hence $0 \le A_n 1_B \le 1$ for all n. Put

$$f_* = \lim \inf A_n 1_B$$
 and $f^* = \lim \sup A_n 1_B$.

It follows from Fatou's lemma and from

$$\int A_n 1_B d\mu = \int 1_B d\mu \le \sum_{m=1}^{\infty} \mu(X_m \le 2^{-(m+2)}) = \sum_{m=1}^{\infty} 2^{-(m+2)} = \frac{1}{4}$$

that $\int f_* d\mu \leq \frac{1}{4}$.

Let h_m be the indicator function of $\{X_m \le 2^{-(m+2)}\}$. Then $h_m \le 1_B$ implies $A_n h_m \le A_n 1_B$ for all n. Put

$$C_m = \{\omega : \exists n \geq m \text{ with } (A_n h_m)(\omega) \geq \frac{1}{2}\}.$$

It will be sufficient to determine φ_m in such a way that

$$\mu(C_m) \ge 1 - 2^{-(m+2)}$$
.

Then the intersection C of the sets C_m has measure $\geq \frac{3}{4}$, and $f^* \geq \frac{1}{2}$ holds on C. This then yields

$$\int f^* d\mu \ge \frac{1}{2} \cdot \frac{3}{4} = \frac{3}{8} > \frac{1}{4} \ge \int f_* d\mu.$$

As h_m depends only on the *m*-th coordinate, we have $Th_m = T_{(m)}h_m$, and this function again depends only on the *m*-th coordinate. Inductively, we obtain $T^ih_m = T^i_{(m)}h_m$ for all $j \ge 0$, and hence $A_nh_m = n^{-1}\sum_{i=0}^{n-1}T^i_{(m)}h_m$.

 h_m is the indicator function of $\{a_1 \le X_m < b_1\}$ with $a_1 = 0$ and $b_1 = 2^{-(m+2)}$. (We need only one set J_s coinciding with the full space $\Omega_1 \times \cdots \times \Omega_{m-1} \times \Omega_{m+1} \times \cdots \times \Omega_m$, so that the condition involving J_s can be deleted.) If c_1' is the unique solution of the integral equation

$$c_1' = \int_0^t \varphi_m(b_1 + c_1^x) dx$$

then $T^i_{(m)}h_m$ is the indicator function of $\{a_1 + c^i_1 \le X_m < b_1 + c^i_1\}$. If φ_m is very small but strictly positive in [0,1[, then the movement of the interval $[a_1 + c^i_1, b_1 + c^i_1[$ is arbitrarily slow. We can make sure that

$$\{2^{-(m+2)} \leq X_m < 1\} \subset C_m,$$

and this is enough to conclude the proof.

Heuristically, this is rather obvious. For a formal argument put $\varepsilon = 2^{-(m+3)}$, and let $m = m_2 < m_3 < \cdots$ be an increasing sequence. Put $\varphi_m(x) = \varepsilon/m$ for $0 \le x < 3\varepsilon$, and $\varphi_m(x) = \varepsilon/m_k$ for $k\varepsilon \le x < (k+1)\varepsilon$ $(3 \le k < 2^{m+3})$. Write $c(t) = c_1^t$ and put $n_2 = m_2 = m$ and $n_{k+1} = n_k + m_{k+1}$ $(k \ge 2)$.

Clearly $b_1 = 2\varepsilon$, c(0) = 0. The speed is ε/m for the first m time units. Hence $c(n_2) = \varepsilon$. Then the speed is ε/m_3 for m_3 time units. Hence $c(n_3) = 2\varepsilon$.

Inductively, one obtains $c(n_{k+1}) = k\varepsilon$ as long as the movement does not stop because we reach the end of the unit interval.

Consider $x \in [0,1[$ with $k\varepsilon \le x < (k+1)\varepsilon$. For $j=n_k$, $[c(j),c(j)+2\varepsilon[=[(k-1)\varepsilon,(k+1)\varepsilon[$ contains x. For $j=n_{k+1}$, the interval $[c(j),c(j)+2\varepsilon[=[k\varepsilon,(k+2)\varepsilon[$ still contains x. It follows that $T^j_{(m)}h_m(\omega)=1$ if $X_m(\omega)=x$ belongs to $[k\varepsilon,(k+1)\varepsilon[$ and $n_k \le j < n_{k+1}$. Assuming $m_{k+1} \ge n_k$, we have $(A_{n_{k+1}}h_m)(\omega) \ge \frac{1}{2}$. This completes the proof.

REFERENCES

- [A] M. A. Akcoglu, A pointwise ergodic theorem in L_p -spaces, Can. J. Math. 27 (1975), 1075–1082.
- [B 1] J.-B. Baillon, Un théorème de type ergodique pour les contractions non-linéaires dans un espace de Hilbert, Compt. Rend. Acad. Sci. Paris A 280 (1975), 1511-1514.
- [B 2] J.-B. Baillon, Comportement asymptotique des itérés de contractions non-linéaires dans les espaces L_p, Compt. Rend. Acad. Sci. Paris 286 (1978), 157-159.
- [DS] N. Dunford and J. T. Schwartz, Convergence almost everywhere of operator averages, J. Rational Mech. Anal. 5 (1956), 129-178.
- [H] E. Hopf, The general temporally discrete Markov process, J. Rational Mech. Anal. 3 (1954), 13-45.
 - [K] U. Krengel, Ergodic Theorems, de Gruyter Studies in Math. 6, Berlin-New York, 1985.
- [KL] U. Krengel and M. Lin, Order preserving nonexpansive operators in L_1 , Isr. J. Math. 58 (1987), 170–192 (this issue).